Which Fields Have No Maximal Subrings?

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Maximal Subrings and E-groups

For a finite group G, let E(G) denote the near-ring of functions generated by the semigroup, End(G), of endomorphisms of G. We characterize when E(G) is maximal as a subnear-ring of M0(G). A group G is an E-group if E(G) is a ring. We give a new characterization of finite Egroups and investigate the problem of determining, for finite E-groups, when E(G) is maximal as a ring in M0(G). 2000 Mathe...

متن کامل

On Ideals Which Have the Weakly Insertion of Factors Property

A one-sided ideal of a ring has the insertion of factors property (or simply, IFP) if implies r for . We say a one-sided ideal of has the weakly IFP if for each , implies , for some non-negative integer . We give some examples of ideals which have the weakly IFP but have not the IFP. Connections between ideals of which have the IFP and related ideals of some ring extensions a...

متن کامل

On Zero Subrings and Periodic Subrings

We give new proofs of two theorems on rings in which every zero subring is finite; and we apply these theorems to obtain a necessary and sufficient condition for an infinite ring with periodic additive group to have an infinite periodic subring. 2000 Mathematics Subject Classification. 16N40, 16N60, 16P99. Let R be a ring and N its set of nilpotent elements; and call R reduced if N = {0}. Follo...

متن کامل

Finite p - Groups which Have a Maximal Subgroup is Full - Normal ( p > 2 )

Let G be a finite p-group, M is a subgroup of G. M is called fullnormal if for any subgroup K of M, we have K G. In this paper, We determine the structure of finite p-groups which have a maximal subgroup is full-normal(p > 2). Mathematics Subject Classification: 20D10, 20D15

متن کامل

Rings with no Maximal Ideals

In this note we give examples of a ring that has no maximal ideals. Recall that, by a Zorn’s lemma argument, a ring with identity has a maximal ideal. Therefore, we need to produce examples of rings without identity. To help motivate our examples, let S be a ring without identity. We may embed S in a ring R with identity so that S is an ideal of R. Notably, set R = Z⊕S, as groups, and where mul...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Rendiconti del Seminario Matematico della Università di Padova

سال: 2011

ISSN: 0041-8994

DOI: 10.4171/rsmup/126-12